
1

Data Structures in Coco/R
H. Mössenböck, Aug. 2002

This technical note describes the data structures in the C# implementation of the compiler generator
Coco/R (http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/CSharp). The major data
structures are:

• The Symbol table (Classes: Symbol). All terminals, pragmas and nonterminals in linear sequence.
This data structure is trivial and therefore not further described.

• The Syntax graph (Classes: Node, Graph). The productions of the grammar as separate
subgraphs. For every nonterminal sym there is a pointer sym.graph to the root of this symbol's
syntax graph. A snapshot of this data structure is described in Section 1.

• The Scanner automaton (Classes: State, Action, Target, Melted). The DFA generated from
token declarations. The token declarations are first translated to a syntax graph which is then
transformed into a deterministic finite automaton. These steps are shown in Section 2.

• The Character classes (Class: CharClass). The character sets declared in the grammar stored in
a linear list. This data structure is trivial and therefore not further explained.

1. Syntax Graph

Production: A = (a {b} c | d [e] f |) g.

Graph:

alt

iter

opt

g

a

d

c

f

b

e

alt

alt

eps

next

down sub

ntsym.graph

Dotted lines denote next pointers that point upwards. For any node n, if n.next points upwards,
then n.up is true.

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/CSharp

2

Operations to build the syntax graph

Graph.MakeFirstAlt(g)

g.l g.lg.r g.r

alt links right open ends
of a graph

Graph.MakeAlternative(g1, g2)

g2.l g1.lg1.l g2.r g1.rg1.r

alt alt

alt

+

Graph.MakeSequence(g1, g2)

g1.l g1.lg2.lg1.r g1.rg2.r

alt alt

alt alt

+

up pointer

Graph.MakeOption(g)

g.lg.l g.rg.r

opt

Graph.MakeIteration(g)

iter

g.lg.l g.rg.r

Graph.Finnish(g)

g.l g.lg.r g.r

alt alt

alt alt

iter iter

3

2. Scanner automaton

Declarations:

CHARACTERS
digit = '0'..'9'.
hex = digit + 'a'..'f'.

TOKENS
number = digit {digit}.
hexnum = digit {digit} 'H'.
special = "0x".

Syntax graph for the tokens

digit

digit

0

digit

digit

iter

iter

number

hexnum

special

H

x

0

0 2

2

2

0 4

1

1

The bold numbers denote the states that were assigned to the nodes by DFA.NumberNodes. They
are used to derive the automaton from the graph as follows: if a node for a character or a
character class c has the number n and its next pointer points to a node with number m, then
this leads to a transition

n m
c

If there is no next node, the transition leads to a new state.

Nondeterministic automaton

0 1

3

3

2

4

digit

digit

0 5

digit

digit

H

The automaton is nondeterministic since there are three transitions with '0' in state 0 and two
with digit in state 0. As a first step in making the automaton deterministic overlapping
character ranges are split. This is done by DFA.MakeUnique.

4

After MakeUnique

0 1

3

5

2

4

0, 1..9

0, 1..9

0 x

digit

digit

H

The next step is to melt those states that can be reached by a transition with the same symbol
from the same state. This is done in DFA.MeltStates.

After MeltStates

0 1

6

7

3

5

2

4

1..9

0

x

x

digit

digit

digit

H

digit

H

H

The only remaining task now is to delete the redundant states (here 1, 2 and 4).

After DeleteRedundantStates

0 6

7

3

5

1..9

0 x

digit

digit

H

H

This is the resulting deterministic finite automaton from which the scanner is generated.

5

Concrete data structures

Nondeterministic automaton

nr
firstAction
…
next

nr
firstAction
…
next

typ
sym
target
next

typ
sym
target
next

typ
sym
target
next

clas
digit

clas
digit

chr
'0'

0

1

state
next

state
next

state
next

to state 1

to state 2

to state 4

…

…

States Actions Targets

After MakeUnique

nr
firstAction
…
next

typ
sym
target
next

typ
sym
target
next

clas
1..9

chr
'0'

0

state
next

state
next

state
next

state
next

state
next

to state 1

to state 2

to state 1

to state 2

to state 4

States Actions Targets

…

6

After MeltStates

nr
firstAction
…
next

typ
sym
target
next

typ
sym
target
next

clas
1..9

chr
'0'

0

state
next

state
next

to state 6

to state 7

States Actions Targets

…

state
set
next

6
{1, 2}

7
{1, 2, 4}

Melted.first

