
Sec. 2.3 The top-down graph 49

2.41 LL(1) conditions for top-down graphs

An alternative chain is LL(1) if an arbitrary input symbol matches at most one
of its nodes. A top-down graph is LL(1) if all of its alternative chains are
LL(1).

The top-down graph of Fig. 2.9 is therefore LL(1) i f T cannot start with + or - and if E
cannot be followed by + or - (these symbols would match the g - node).

Since each EBNF production corr esponds to a top-down graph, the LL(1) condi tions for
top-down graphs are also the LL(1) conditions for EBNF grammars. In order to check if
an EBNF grammar is LL(1), it is easiest to generate its top-down graph and check if it
meets the LL(1) condi tions. The LL(1) con ditions for EBNF grammars can also be
derived from the definition of the EBNF grammar alone without constructing a
top-down graph. However, this is cumbersome and results in no new insights. We
therefore omit the description and leave the task to the interested reader.

LL(1) Top-down graphs and grammars
of programming languages

If top-down graphs are to have practical value, one must be able to represent the
grammars of programming languages as LL(1) top-down graphs, and therefore as LL(1)
EBNF grammars. We may ask, therefore, if they do this without exception, or if there
are constructs that resist an LL(1) representation, and if so, what can be done about it.
First of all, LL(1) violations by left-recursive productions and by the start of several
alternatives with the same symbol can easily be avoided in top- down graphs and in
EBNF notation. Remaining LL(1) violations can usually be removed with various tricks
that are determined with insight into the particular situation. As an aid for the ‘grammar
design er’, we will treat several typica l cases and distinguish between the following five
methods:

1. substitution and factorization;
2. alphabet extension;
3. syntactic extension;
4. acceptance of non-LL(1) constructs;
5. misceflaneous transformations.

Substitution and factorization. Consider a production with two alternatives that start
with different nonterminals X and Y, where X and Y can start with the same symbol
(terminal or nonterminal). Then it is often possible to

Sec. 2.3 The top-down graph 50

replace the symbols X and Y by the right-hand side of their productions, and to extract
their common starting string by left-factorization.

This can be simple and obvious as in the various DO instructions PLM/8O (and
similarly in PL/1):

statement =
...
| dostatement
| whilestatement
| forstaternent
| casestatement
| ...

dostatement = " DO" ";" block.
whilestatement = "DO" "WHILE" expr ";" [statement} ending.
forstatement = "DO" ident "=" expr "TO" expr ["BY" expr] ";"

 {statement} ending.
casestatement = "DO" "CASE" expr ";" {statement} ending.

By substitution and factorization this results in

statement =
...
| "DO"

(";" block
| ("CASE" expr ";"
| "WHILE" expr ";"
| ident "=" expr "TO" expr ["BY" expr] ";"
) {statement} ending

)
| ...

However, it can also be difficult. In grammars such as Modula-2 a factor can be a set or
a designator, and both can begin with an identifier:

factor = ... | designator [actpars] | set | ...

designator = qualident {"." ident | "[" exprlist "]" | "á" }.
set = [qualident] "{" [elementlist] "}".
qualident = ident {"." ident}.

Note that even the production for designator taken alone is not LL(1). For instance,
ident.ident may be simply a qualident or a qualident followed by ident

The removal of the LL(1) conflict consists of combining designator and set into a
new symbol deset, and then splitting designator into ident and remainder desigrest.
After several substitutions and factorizations, the following LL(1) constructs result:

factor = ... | deset | ...

deset =
"{" [elementlist] "}"

Sec. 2.3 The top-down graph 51

| ident {"." ident}
(("^" | "[" exprlist "]") desigrest [actpars]
| "{" [elementlist] "}"
| [actpars]
).

desigrest = {"." ident | "[" exprlist "]" | "á" }.

The equivalence of the old and new constructs can no longer be easily seen.

Alphabet extension. In selecting an alternative, it is fairly common for two lookahead
symbols to be necessary to find the right one. The main example of this is when labels
appear in front of statements:

statement = [ident ":"] (ident ":=" expr | ifstatement | ...).

An ident at the beginning of a statement may be a label or the left part of an assignment.
This can only be determined by the symbol following ident. This confl ict can often be
resolved by extending the terminal alphabet. In the preceding case, the word label can
be added to the alphabet, and the lexical analyzer can be required to supply a label
instead of an ident if ident is followed by a ‘:’. In th is case, the lexical analyzer is used
to resolve the LL(1) conflict.

This method leads to complications if the lexical analyzer is required to carry out a
wider inspection of context to determine whether or not to substitute two terminals by
another. For example, in Algol 60, ‘ident :’ does not always mean the label of an
instruction. An identifier may also appear in a declaration, as in ARRAY(n : m). In such
cases, the lexical ana lyzer is no longer independent of the syntax analyzer since it must
consider the context.

Syntactic extension. In Algol 60 there exist multiple assignments, such as

assignment = designator ":=" {designator ":="} expr.

where expr can start with designator. This LL(1) violation is very nasty. It can be
removed by ‘substitution and factorization’, but this is very cumbersome (the reader
should try it). It is easier to ‘expand’ the designator inside the cur ly brackets to expr.
This requires the introduction of an additional production for assignrest:

assignment = designator ":=" assignrest.
assignrest = expr [":=" assignrest]

The syntactic extension must be compensated by a semantic restriction. If in the
production for assignrest the right-recursive part is present, expr must be restr icted to be
a designator. This can be achieved by the introduction of a boolean attribute
isdesignator. Anticipating knowledge from Chapter 3, this

Sec. 2.3 The top-down graph 52

1 Note the where (isdesignator) is called a Context Condition; in

Coco/R a context cond ition is represented as a semantic action, exampe:

(. if not isdesignator then SemError(100, ‘’); .)

may be written as an attributed grammar as follows:

assignrest =

expr á isdesignator
[":=" where (isdesignator) 1

 assignrest].

This means: by syntactic extensions, portions of the language definition are moved from syntax to
static semantics.

Acceptance of non-LL(1) constructs. If it is known that the parser tries to match the alternatives
in the order they are written, some LL(1) violations can be left alone. The best known case is the
dangling else:

ifstatement = "IF" expr "THEN" statement ["ELSE" statement].

Although this const ruct is not LL(1) , and is even ambiguous (see Example 2.22), i t can be left
alone if one can be sure that the paeser, having recognized the sta tement following THEN, first
tries to detect the optional ELSE, and only regards the entire if statement as complete if there is
no ELSE.

Other transformations. Sometimes, a grammar that is not LL(1) can be transformed into an
equivalent LL(1) grammar by simple transformations that do not fall into any of the four
categories above. For example, in Algol 60, a block is defined as

block = head ";" body.
head = "begin" declaration {";" declaration}.

This construct is not LL(1) since the semicolon is used in a dual role. It separates adjacent
declarations and it separates body from head. The solution is simple: The grammar can be
transformed so that the semicolon becomes a terminator instead of a separator:

block = head body
head = "begin" declaration ";" {declaration ";"}

The necessity of such transformations, their difficulty, and the uncertainty of executing these
transformations correct ly is a weakness of the LL-method, and often a cause for cr iti cism. In
bottom-up analyzable LR(1) gramnar, no trans formations, or only a few, are needed, so resea rch
has been focused on the LR-method. However, syntax is but one aspect. What is gained with the
LR-method must be paid back by the connection of semantics to syntax: it is much more inflexible
in the LR-method than in the LL-method, often leads to violations of the LR-property, and then
also requires transformations. In addition, the LL(1)-method is much easier to understand than the
LR-method. This results in easier transformations and more understandable error messages.

